PII: S0040-4020(96)00696-5 # Catalysis with Inorganic Cations. VI. The Effect of Chiral Bis-Oxazoline-Magnesium Perchlorate Catalysts on Chemo- and Enantioselectivity of Intramolecular Hetero Diels-Alder and Ene Reaction Giovanni Desimoni,*a Giuseppe Faita,a PierPaolo Righetti,a and Nicola Sardoneb. ^aDipartimento di Chimica Organica, Università di Pavia, V.le Taramelli 10, 27100 Pavia, Italy. ^bCentro Grandi Strumenti dell'Università di Pavia, via Bassi 21, 27100 Pavia, Italy. Abstract. (E)1-acetyl-[2-(3-methyl-2-butenyloxy)benzylidene]indolin-2-one (1) gives competition between the intramolecular Hetero Diels-Alder (HDA) (thermal conditions) and the intramolecular ene reaction (IER) (magnesium perchlorate - MP - catalyzed conditions). Several complexes derived from MP and chiral bisoxazolines were found to be excellent chemo- and enantioselective catalysts with a different degree of selectivity depending on the substituents on the oxazoline ring. The most chemoselective oxazolinic ligand forced the reaction to give a ratio of [HDA]: [IER] products 5:95. The trans-(4,5-diphenyloxazoline) - MP complex is the best enantioselective catalyst and the product of the IER of 1 can be prepared in 75% yield and 88% e.e.. Copyright © 1996 Elsevier Science Ltd #### Introduction In the previous paper of this series¹ the reactivity of (E)1-acetyl-3-{2-(3-methyl-2-butenyloxy) benzylidene]indolin-2-one (1) was discussed. Magnesium perchlorate (MP) coordinates both carbonyl groups of this substrate and, in the presence of two equivalents of monocarbonyl ligand (or one equivalent of a β-dicarbonyl ligand) the chemoselectivity involving Hetero Diels-Alder (HDA) and intramolecular ene reaction (IER) is strongly influenced. Thus the ratio of [6a,13c]-cis- and trans-9-acetyl-7,7-dimethyl-6,6a,7,13c-tetrahydrochromeno[4',3':4,5]pyrano[2,3-b]indoles (2a,b) vs (3S,3'R,4'S) and (3R,3'R,4'R) 1-acetyl-3(3'-isopropenylchroman-4'-yl)oxindoles (3a,b), isomerized by silica gel into their (3R,3'R,4'S) and (3S,3'R,4'R) isomers (4a,b), ranges from 100: 0 under thermal conditions to 50: 50 when the reaction was run in the presence of MP and two equivalents of benzophenone at room temperature in CH₂Cl₂ (Scheme 1). Obviously all these products were racemic mixtures. An attemp' was made to use chiral ketones as auxiliary ligands coordinated to magnesium ion to induce enantioselectivity in the ring closure of 1. The reaction run in the presence of two equivalents of (1R)-camphor gave 2 and 4 almost optically inactive. The hope to organize around Mg(II) the ligands and 1 in a supramolecolar device enantiotopically oriented, failed, but this was a potential route to catalyzed enantioselective intramolecular HDA and IERs. Asymmetric catalysis in IER is a well known process in organic synthesis, 2 but Mg(II) was never used as the core of the catalyst. Asymmetric- catalyzed HDA (and its competition with ER) was studied when involving heterodienophiles, 2b,2c,3,4 Only two intramolecular examples involving α,β -unsaturated carbonylolefin cyclization have been reported, $^{5-7}$ both with a chiral titanium complex as catalyst, and good enantiomeric excesses were obtained in both reactions. A development of the previous concepts was attempted by using a bidentate ligand, not necessarily having two carbonyl groups as the coordinating centers. ### Scheme 1 #### RESULTS AND DISCUSSION The first experiments were run with a variety of bi- and tridentate ligands with different degrees of symmetry. (S)-3-Phenyl-2-(2,4,6-trimethylbenzensulfonamido)-1-propanol (5), (R,R)-1-(4-nitrophenyl)-2-(2,4,6-trimethylbenzensulphonamido)-1,3-propandiol (6), (S,S)-1,2-bis(2,4,6-trimethylbenzensulfonamido) cyclohexane (7), and (S,S)-1,2-bis(2,4,6-trimethylbenzylamino)cyclohexane (8) were synthetized, 7 and 8 being examples of C_2 symmetry ligands (Scheme 2 - Mes is 2,4,6-trimethylphenyl group). #### Scheme 2 The best conditions were found to be: equimolecular amounts of 1, MP and ligand, at room temperature, in CH₂Cl₂ as solvent. After the time reported in Table 1, the composition of the reaction mixture was monitored by ¹H-nmr to determine the relative yields of 2a,b and either 3a and 3b (if the kinetic products of the IER are stable under the experimental conditions) or 4a and 4b (if the isomerization at the C3 atom occurred). A column chromatography separated 2a,b and the isomerized (by silica gel) 4a and 4b. Their enantiomeric excess was then determined following the protocol detailled in the experimental part. All the above mentioned catalysts (5-8, entries A-D respectively) gave significant amounts of IER products (in the range 40-55%). From entries A-C, the kinetic products 3a,b were formed, the diamine 8 (entry D) isomerized them to 4a,b. The rotatory powers of all the isolated products corresponded to non-significant e.e. (< 5% - Table 2). Chiral bis-oxazolines with C_2 symmetry have been reported to be excellent ligands for asymmetric catalysis of DA⁸ and competing HDA-ERs.⁴ Hence 2,2-bis{2-[4(S)-benzyl-, [4(S)-iso.propyl-, [4(S)-tert.butyl- (9a-c), [4(R)-phenyl- (10), and [4(S)-methyl-5(R)-phenyl-1,3-oxazolinyl]}propane (11) (Scheme 3) were tested as ligands with inorganic perchlorates as the cationic core of the catalysts. The bis-oxazolines 9c and 10 are commercially available, 9a,b were prepared following the known literature methods, 9,10 the synthesis of 11 was recently described by our group. 11 Again the cation was found to be very important since the catalysts derived from 9a and lithium, sodium or barium perchlorate were found to be inactive and, after 30 days at ambient temperature, nearly all starting product 1 was recovered unchanged. MP, on the contrary, was an excellent inorganic core for complexes with chiral bis-oxazolines as ligands. The starting product disappeared within three days and the reaction products were **2-4a,b** in the different ratios as determined by ¹H-nmr (Table 1). Table 1. Chiral ligands, reaction conditions, yields, and product distribution of the intramolecular reaction of 1 at r.t. in CH2Cl2 with MP. | Entry | Ligand | | Ratio | 0 | time | Yielda | | | Product distribution %b | ribution %b | | | [HDA] | |----------|--------|---|--------------|--------------|------|--------|-----|----|-------------------------|-------------|----|----|-------| | | Œ | Ξ | [1] | [MP] | | % | 2a | 2b | 3a | 3b | 4a | 4p | [ER] | | Ą | ĸ | | | - | 36 h | quant. | 51 | 9 | 13 | 30 | ပ | ပ | 57:43 | | В | 9 | - | - | - | 24 h | quant. | 55 | 5 | 16 | 24 | ပ | ပ | 60:40 | | ၁ | 7 | - | | | 24 h | quant. | 53 | S | 14 | 28 | 1 | 1 | 58:42 | | D | œ | | | - | 24 h | quant. | 42 | 4 | ပ | ပ | 19 | 35 | 46:54 | | Щ | 9a | _ | | - | 2 d | quant. | 5 | 1 | 1 | 11 | 6 | 74 | 5:95 | | ĭΤ | 96 | - | - | | 3 d | quant. | 11 | υ | ၁ | 9 | 13 | 70 | 11:89 | | Ŋ | 36 | | - | - | 3 d | quant. | 37 | 4 | 2 | 4 | 16 | 37 | 41:59 | | Н | 10 | _ | | | 3 d | quant. | 17 | 2 | S | 17 | 11 | 48 | 19:81 | | Н | 10 | 3 | | | p 8 | quant. | 24 | 2 | 8 | 6 | 15 | 47 | 26:74 | | - | = | - | - | - | 3 d | quant. | 6 | ၁ | S | 18 | 15 | 53 | 9:91 | | × | 11 | 3 | - | _ | 5 d | >95 | 10 | ၁ | 7 | 8 | 20 | 09 | 10:90 | | 1 | 12 | - | - | | 3 d | quant. | 24 | 7 | ٤ | 7 | 15 | 43 | 26:74 | | Σ | 13 | - | | - | 3 d | quant. | 10 | ၁ | 2 | 13 | 13 | 62 | 11:89 | | z | 13 | 3 | : 1 | : 1 | 6 d | 85 | 111 | 1 | ъ | 7 | 12 | 65 | 12:88 | a)Isolated yields of **2a,b** and **4a,b**: the difference is recovered starting product 1; b)the product distribution, determined by nmr, is the average of at least three independent experiments; c)yields less than 1% detected by nmr. #### Scheme 3 Again 4a,b, the thermodynamic IER products, are formed from 3a,b under the experimental conditions. To prove this, a mixture of 2,3a,b (prepared from 1 in MP - acetone - CH₂Cl₂, the conditions of entry F in ref. 1), stirred 3 days in CH₂Cl₂ with the catalyst derived from 10 and MP, gave 4a,b and the ratios [3a]:[4a] and [3b]:[4b] were nearly identical to those obtained under the conditions described in this paper under entry H in Table 1. The chemoselectivity was influenced by the substituents on the ligand and the ratio [HDA]:[IER] products ranges from 1:1 to 5:95, a significant result taking into account that, under thermal conditions, 1 gives HDA products only.¹ The rotatory power of 4a was always very low and it was impossible to correlate this to any specific e.e. since chiral europium reagents were found inactive in discriminating the enantiomers. The $[\alpha]_{546}$ of 2a was negligible from the reaction with 9a-c, low from reactions with 10 and 11. The $[\alpha]_{546}$ of 4b, the main reaction product, was unsatisfactory for samples deriving from the reactions catalyzed by 9a-c and 10, but was promising for the sample of 4b derived from the reaction with ligand 11. The product separated by the column chromatography had $[\alpha]_{546} = +75^{\circ}$ and chiral Eu(cfc)₃ gave an e.e. of 47% determined on the shift of the acetyl group. When this product was crystallized from pentane, a fraction separated having a strongly lower $[\alpha]_{546}$ value and from the mother liquors, by slow evaporations, nice needles of 4b were isolated whose $[\alpha]_{546}$ was +158.6°. The Eu(cfc)₃ showed this was a single enantiomer, at least in the limit of the technique. These crystals were submitted to an x-ray structure determination whose results are shown in Figure 1. The absolute configuration of (+)4b was not assigned, but the crystal packing showed it was a single enantiomeric species with a (3S,4'R,3'R) or (3R,4'S,3'S) configuration as previously supposed.¹ Thus, assuming $[\alpha]_{546} = +158.6^{\circ}$ as the rotatory power of the pure dextrorotatory enantiomer, the e.e. of each sample of 4b was easily determined by a simple polarimetric measure (Table 2). Our attention was focussed on the results of 10 and 11. The possibility of a short turn-over of the catalyst was tested in entries I and K where the ratio [1]: [ligand]: [MP] was 3:1:1. The results in terms of products distribution and enantioselectivity were very similar to those of the corresponding entries H and J. The sole difference was a longer reaction time required to accomplish the reaction. Figure 1. ORTEP II drawing of the asymmetric unit of 4b. The important result was the effect of a 4(R)-phenyl group on the oxazoline ligand (10) that gave (-)4b in about 30% e.e., whereas a 5(S)-phenyl group (ligand 11) gave (+)4b in 47% e.e.. This means the phenyl groups in 4- and 5- on the same face of the ring give rise to opposite e.e. of 4b and suggests that a worse result in terms of enantioslelectivity should be obtained from a cis-(4,5)-diphenyl oxazolinic ligand than from its trans diastereoisomer. The ligands 12 and 13 (Scheme 4) were tested, the former prepared in accordance to the patented Masamune protocol, 12 the latter following the synthesis recently described by our group. 11 ## The cis isomer 12 (entry L) was less chemo- and enantioselective than the trans isomer 13, either with this in a ratio 1:1 or 1:3 with 1 (entries M and N respectively). The chemoselectivity with 12 and 13 gave ratios [HDA]: [IER] of 1:4 and 1:9 respectively. The enantioselectivity with 12 and 13 resulted in the formation of (-)4b as the main isomer for both catalysts, and the e.e. was 51% and 88% respectively. This is an appreciable result, taking into account that the reactivity of 1 requires the reaction to be run at room temperature. | Table 2. | Isolated yields and enantiomeric excess of products from the intramolecular HDA and | |----------|-------------------------------------------------------------------------------------| | | ER of 1 under the catalytic conditions in Table 1. | | | | 2a | ıa | 4a | 4b | | |-------|--------|---------|----------------------|---------|---------|----------------------| | Entry | Ligand | yield % | e.e % ^{b,c} | yield % | yield % | e.e % ^{b,c} | | Α | 5 | 50 | d | 15 | 27 | 2(+) | | В | 6 | 42 | 4(-) | 12 | 20 | d | | C | 7 | 49 | 5(-) | 10 | 25 | d | | D | 8 | 40 | d | 15 | 30 | d | | E | 9a | 5 | | 10 | 75 | 12(-) | | F | 9b | 7 | | 12 | 65 | 15(+) | | G | 9с | 42 | 3(-) | 15 | 40 | 29(+) | | Н | 10 | 15 | 14(-) | 16 | 61 | 30(-) | | I | 10 | 20 | 9(-) | 15 | 53 | 29(-) | | J | 11 | 8 | 5(+) | 18 | 63 | 47(+) | | K | 11 | 8 | 4(+) | 23 | 69 | 46(+) | | L | 12 | 21 | 11(-) | 16 | 48 | 51(-) | | M | 13 | 8 | 5(-) | 11 | 75 | 88(-) | | N | 13 | 9 | 5(-) | 11 | 70 | 81(-) | a)Isolated in admixture with the corresponding amount of **2b**. b)The sign of the optical rotation of the main isomer is reported in parenthesis. c)Determined as reported in the experimental section. d)Nearly 0% e.e.. There are some implications in the catalytic effect of complexes between bis-oxazolines and MP. The *iso*-propyl, *tert*-butyl and phenyl groups in position 4 with the same (R) configuration (consider 10 and the enantiomers of 9b and 9c), give (-)4b as main enantiomer. This suggests that the approach of the enic fragment to the Si face of the enophile is prevented by the steric hindrance of the substituents. If this is true, (-)4b could have a (3R,4'S,3'S) configuration. A 5-phenyl group in the (R) configuration (consider 13 and the enantiomer of 11) increases the formation of (-)4b. Hence the approach of the ene to the Re face of the enophile must be favoured, even if steric hindrance should disfavour this. In conclusion, a synergism between the phenyl groups in the positions 4 and 5 both with the (R) configuration, makes the *trans* isomer 13 (and not the *cis* one 12) a ligand suitably designed for the enantioselective intramolecular ene reaction of 1. #### **EXPERIMENTAL SECTION** Melting points were determined by the capillary method and are uncorrected. Elemental analyses were made on C. Erba CHN analyzer mod. 1106. ¹H-Nmr (TMS as standard) were recorded on a Bruker AC 300 spectrometer, ir spectra (nujol mulls) on a Perkin Elmer 881 spectrophotometer; optical rotation at room temperature on a Perkin Elmer 241 polarimeter with 1 dm cell. Column chromatography: silica gel 230-400 mesh. (E)-1-Acetyl-3-[2-(3-methyl-2-butenyloxy)benzylidene]-2-oxindole (I) was prepared as previously described.¹ (S)-3-Phenyl-2-(2,4,6-trimethylbenzensulfonamido)-1-propanol (5). (L)-Phenylalanilol (1.0 g - 6.6 mmol) was added to a stirred solution of 2,4,6-trimethylbenzensulfonyl-chloride (1.45 g - 6.6 mmol) in triethylamine (6.6 mmol) and dichloromethane (35 mL). The work-up of the mixture and a column chromatography (cyclohexane-ethyl acetate 70:30 as eluant) gave pure 5 (1.55 g - 71%), m.p. 56-8 °C from *n*-hexane. I.r.: $v_{OH,NH} = 3500$, 3320 cm⁻¹. ¹H-Nmr (DMSO- d_6), δ : 7.45 (1H, d, NH), 7.07 (3H, m, aromatic protons), 6.95 (2H, m, aromatic protons), 6.87 (2H, s, aromatic protons), 4.80 (1H, t, OH), 3.36 (1H, m, CH), 3.20 (2H, m, OCH₂), 2.84 and 2.47 (1H + 1H, dd + dd, CH₂Ph), 2.43 (6H, s, 2 CH₃), 2.23 (3H, s, CH₃). Elem. anal.; calc. for C₁₈H₂₃NO₃S: C, 64.9; H, 7.0: N, 4.2. Found: C, 64.9; H, 6.9; N, 4.2%. [α]_D = -32.3° (c = 1, chloroform). (R,R)-l-(4-nitrophenyl)-2-(2,4,6-trimethylbenzensulfonamido)-l,3-propa andiol (6). From (R,R)-2-amino-1-(p-nitrophenyl)-1,3-propandiol and 2,4,6- $trimethylbenzensulfonylchloride, following the method reported for <math>\bf 5$, $\bf 6$ was obtained in 82% yield, m.p. 246-7 °C from ethanol. I.r.: $v_{OH,NH}$ = 3570, 3525, 3455, and 3262 cm⁻¹. 1 H-Nmr (DMSO- d_{6}), δ : 7.80 and 7.32 (2H + 2H, d + d, p-nitrophenyl aromatic protons), 7.28 (1H, d, J = 6.5 Hz, 1-OH), 6.64 (2H, s, mesityl aromatic protons), 5.68 (1H, d, J = 5.3 Hz, NH), 4.99 (1H, dd, J = 6.5 and 1.7 Hz, H-1), 5.00 (1H, dd, J = 6.8 and 4.3 Hz, 3-OH), 3.63 (2H, \sim dt, J = 6.8, 10.0, and 10.5 Hz, H₃), 3.50 (1H, \sim dt, J = 4.3, 5.0, and 10.5 Hz, H₃·), 3.34 (1H, m, J = 1.7, 5.0, 10.0, and 6.5 Hz, H₂), 2.30 (6H, s, 2 CH₃ mesityl), 2.09 (3H, s, CH₃ mesityl). Elem. anal.; calc. for $C_{18}H_{22}N_{2}O_{6}S$: C, 54.8; H, 5.6; N, 7.1. Found: C, 54.6; H, 5.7; N, 7.2%. [α]_D = -57.3° (c = 0.8, chloroform-DMSO 5:1). (S,S)-1,2-bis(2,4,6-trimethylbenzensulfonamido)cyclohexane (7). It was prepared as described in the literature.¹³ (S,S)-1,2-bis(2,4,6-trimethylbenzylamino)cyclohexane (8). The synthesis of 8 was accomplished by heating (S,S)-1,2-diaminocyclohexane with 2.2 equivalents of mesitaldehyde following essentially the preparation reported in the literature for a similar product, 14 except the reduction of the isolated Schiff base (m.p. 122-3 °C from ethanol) that was made with sodium borohydride in ethanol-toluene 10:1 solution. 8 was purified by column chromatography (eluant: cyclohexane-ethyl acetate 85:15), m.p. 167-8 °C (from ligroin). I.r.: $v_{NH} = 3300 \text{ cm}^{-1}$. 14 H-Nmr (CDCl₃), δ : 6.81 (2H, s, aromatic protons), 3.85 and 3.48 (1H + 1H, d + d, J = 10 Hz, ArCH₂), 2.30 (6H, s, 2 CH₃), 2.27 (3H, s, CH₃). Elem. anal.; calc. for $C_{26}H_{38}N_2$: C, 82.5; H, 10.1; N, 7.4. Found: C, 82.6; H, 10.3; N, 7.4%. [α]_D = -98.2° (c = 0.9, chloroform). - 2,2-Bis{2-[4(S)-benzyl- or 4(S)-isopropyl-1,3-oxazolinyl]}propanes (9a,b). These were prepared according to the procedures described for bis(oxazolines) from the corresponding aminoalcohols and dimethyl malonyl dichloride.¹⁵ - 9a. The intermediate hydroxyamides and chloroamide had the m.p. and 1 H-nmr spectra identical to those reported in the literature. The bis-oxazoline 9a was isolated in 51% yield after chromatographic purification (eluant: cyclohexane-ethyl acetate 1:1 first, then with ethyl acetate). The oil was crystallized from diisopropyl ether, m.p. 61-2 °C (Lit. 9 52-3 °C). 1 H-nmr spectra was identical to that reported in the literature. [α]_D = -42.7° (c = 0.95, chloroform). - **9b**. The preparation of this bis-oxazoline is reported by Evans and coworkers¹⁶ in the supplementary material of the paper in the reference. - 2,2-Bis $\{2-[4(S)-tert.butyl- or 4(R)-phenyl-1,3-oxazolinyl]\}$ propanes (9c,10). These are commercially available by Aldrich. - 2,2-Bis $\{2-[4(S)-methyl-5(R)-phenyl-, (4R,5S)-diphenyl-, and (4R,5R)-diphenyl-1,3-oxazolinyl]\}$ propanes (11-13) were prepared as desciribed in the literature. 11,12 Reaction of 1 catalyzed by MP-chiral ligands (Entries A-N). General procedure. Anhydrous magnesium perchlorate (223 mg - 1 mmol) was added to a stirred solution of chiral organic ligands (5-13 - 1 mmol) in anhydrous CH₂Cl₂ (1.0-3.0 mL, the minor volume is required for bis-oxazolines) and within one hour the inorganic salt in general dissolved and a nearly limpid solution is obtained. For entries I, K., and N the above amounts are reduced to one third. 1 (347 mg - 1 mmol) is added and stirring is continued at room temperature for the time reported in Table 1. The reaction mixture, when 1 disappeared, was decomposed in water and extracted with CH₂Cl₂. A portion of the crude reaction mixture was monitored by H-nmr and the ratios of 2a,b, 3a,b, and 4a,b were determined. The reaction mixture was column chromatographed over siliga gel. The eluant, cyclohexane-ethyl acetate 97:3, was suitable to separate 4a, 4b, and 2a,b in the order, and the chiral ligands were recovered unchanged, suitable to be recycled. The $[\alpha]_D$ and $[\alpha]_{546}$ of 2a (in admixture with 2b in a ratio of about 10:1), 4a (whose values were always very low), and 4b were measured in acetone at the following concentrations: 2a (c = 0.3) except entries J, K, M, and L where the rotatory powers were measured at c = 0.1; 4a (c = 0.15-0.20); 4b (c = 1.0). The e.e. of 2a reported in Table 2 are derived from a relationship observed between [α]_{5.46}, measured as above, and the e.e. measured with chiral Eu(cfc)₃ that splitted the signals of the methyl groups at 1.52 and 1.58 δ and that of the acetyl group at 2.63 δ . The e.e. of 4b reported in Table 2 are referred to a sample of pure (+)-4b whose $[\alpha]_{546}$ = + 158.6° was taken as the reference and whose structure was determined by X-ray analysis. Table 3. Crystal and refinement data. | Formula | C ₂₂ H ₂₁ NO ₃ | |-------------------------------------------------------|----------------------------------------------------------| | Mw | 347.42 | | Crystal Colour | colourless | | Crystal Size | $0.48 \times 0.12 \times 0.10 \text{ mm}$ | | System | monoclinic | | Space Group | P2 ₁ | | a | 9.650(3) Å | | b | 10.246(1) Å | | c | 18.497(6) Å | | α, β, γ | 90, 99.70(1), 90° | | V | 1802.8(8) | | Z | 4 | | Dcalc | $1.28 \text{ Mg} \times \text{m}^{-3}$ | | Radiation | $Cu K_{\alpha} (\lambda = 1.54184 \text{ Å})$ | | | graphite monochromated | | μ | 0.646 mm ⁻¹ | | T | 293(3) °K | | θ range | 2 - 70 ° | | Scan Type | ω - 2θ | | Reflection Measured | $-11 \le h \le 11$; $0 \le k \le 12$; $0 \le l \le 22$ | | Transmission Coeff. | and Friedel's pairs
Tmin 0.658 ; Tmax 0.994 | | Tot. Reflections Meas. | 7342 | | Unique Reflections | 3559 | | R _{int} | 0.031 | | Obs. Refls $[I \ge \sigma(I)]$ | 3384 | | ^a R | 0.061 | | G.O.F. | 1.334 | | $^{\mathbf{b}}\mathbf{R}\mathbf{w}\;(\mathbf{w}=1)$ | 0.067 | | Refined Parameters | 469 | | ^a $R = \Sigma Fo - Fc / \Sigma Fo $ | b $Rw = [\Sigma w(Fo - Fc)^2 / \Sigma w(Fo)^2]^{1/2}$ | Crystal data and single crystal structure refinement of (+)-4b. The crystal structure was determined on a sample of 4b whose $[\alpha]_{546}$ was +158.6° (c = 1.0, acetone). The asymetric unit contains two indipendent molecules which show significative differences in the acetyl group orientation. Unit cell parameters and intensity data were obtained on Enraf-Nonius CAD-4 diffractometer. Calculations were performed with the MOIEN software¹⁷ on a MicroVax 3100 computer. The cell dimensions were determined by least-squares fitting of 25 centred reflections monitored in the range 29<0<33°. Correction for Lp and empirical absorption¹⁸ were applied. The structure was solved by direct methods (SIR88),¹⁹ The non-hydrogen atoms were refined anisotropically by full-matrix least-squares. All the hydrogen atoms were found in the difference Fourier map, inserted with an overal atomic displacement parameter equal to 5.0 Å^2 but not refined. Secondary extinction²⁰ were applied. Atomic scattering factors were taken from ref. 21. In order to establish the absolute chirality of the structure, the pairs of Friedel-related reflections were measured but without any results: the least-squared refinements of both alternative models converged to the same R value, while the refinement of the η parameter²² gave ambiguous answers. The enatiomer reported here it has been chosen on the basis of chemical considerations. Diagrams of the molecular structure were performed by ORTEP program,²³ and the pertinent experimental details are given in Table 3. #### **ACKNOWLEDGEMENTS** We are grateful to the Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) and to the Consiglio Nazionale delle Ricerche (CNR) for the financial support of this research. #### REFERENCES AND NOTES. - 1) Part V: Desimoni, G.; Faita, G.; Tacconi, G. preceding paper. - 2) Recent reviews of asymmetric IER: a) Oppolzer, W. Angew. Chem. Int., Ed. Engl. 1984, 23, 876; b) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021; c) Jones, G.B.; Chapman, B.J. Synthesis 1995, 475. - 3) A recent review on catalytic asymmetric Diels-Alder cycloadditions considering reactions with heterodienophiles: Kagan, H.B.; Riant, O. Chem. Rev. 1992, 92, 1007. - 4) Johannsen, M.; Jørgensen, K.A. J. Org. Chem. 1995, 60, 5757. - 5) Narasaka, K.; Hayashi, Y.; Shimada, S. Chemistry Lett. 1988, 1609. - 6) Tietze, L.F.; Saling, P. Synlett. 1992, 281. - 7) Tietze, L.F.; Saling, P. Chirality 1993, 5, 329. - a) Corey, E.J.; Imai, N.; Zhang, H.-Y. J. Am. chem. Soc. 1991, 113, 728; b) Corey, E.J.; Ishihara, K. Tetrahedron Lett. 1992, 33, 6807; c) Evans, D.A.; Miller, S.J.; Lectka, T. J. Am. Chem. Soc. 1993, 115, 6460; d) Evans, D.A.; Murry, J.A.; von Matt, P.; Norcross, R.D.; Miller, S.J. Angew. Chem. Int., Ed. Engl. 1995, 34, 798. - 9) Von Matt, P.; Lloyd-Jones, G.C.; Minidis, P.E.; Pfaltz, A.; Macko, L.; Neuburger, M.; Zehnder, M.; Rüegger, H.; Pregosin, P.S. Helv. Chim. Acta 1995, 78, 265. - 10) Denmark, S.F.; Nakajima, N.; Nicaise, O.J.-C.; Faucher, A.-M.; Edwards, J.P. J. Org. Chem. 1995, 60, 4884. - 11) Desimoni, G.; Faita, G.; Mella, M. Tetrahedron, submitted for pubblication. - 12) Masamune, S.; Lowenthal, R.E. U.S. Pat. 5.298.623 (1994); C.A. 1994, 121, 205742. - 13) Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobajashi, S. Tetrahedron 1992, 48, 5691. - 14) Corey, E.J.; Da Silva Jardine, P.; Virgil, S.; Yuen, P.-W.; Connell, R.D. J. Am. Chem. Soc. 1989, 111, 9243. - 15) Smedley, I.; J. Chem. Soc. 1910, 97, 1492. - 16) Evans, D.A.; Woerpel, K.A.; Hinnman, M.H.; Faul, M.M. J. Am. Chem. Soc. 1991, 113, 727. - 17) MoIEN, "An Interactive Structure Solution Procedure", Enraf Nonius, Delf, The Netherlands, 1990. - 18) North, A.C.T.; Phillips, D.C.; Mathews, F.S. Acta Cryst. 1968, A24, 351. - 19) Burla, M.C.; Camalli, M.; Cascarano, G.; Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Cryst. 1989, 22, 389. - 20) Zachariasen, W.H. Acta Cryst. 1963, A16, 1139. - 21) International Tables for X-ray Crystallography, Kynochn Birmingham, England, Vol. 4, 99-101 and 149-150 (1974). - 22) Roger D. Acta Cryst. 1981, A37, 734. - 23) Johnson C.K. ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge TN, USA (1976). (Received in UK 21 June 1996; revised 22 July 1996; accepted 25 July 1996)